CIE.
Если имеется один контрольный цвет, то с помощью него можно получить некоторые цвета, варьируя данный контрольный по светлоте (при условии, что не используется цветовой тон и насыщенность). Данная процедура называется фотометрией и используется при создании монохроматических репродукций цветных изображений.
С помощью двух контрольных цветов можно получить гораздо больше цветов, но не все. Для получения видимого набора цветов используют три контрольных цвета, соблюдая условие, что они находятся в разных областях спектра. Рассмотрим следующий базис цветов:
Red- красный; лежит в области длинных видимых волн (`700 нм).
Green- зеленый; лежит в области средних видимых волн (`546 нм).
Blue- синий; лежит в области средних коротких волн (`436нм).
Рассмотрим цвет C:
,
r, g, b- относительные количества потоков базовых цветов, входящие в интервал [0; 1]. Но данным сложением можно уравнять не все цвета. Например, для получения сине-зеленого цвета объединяем синий и зеленый потоки цвета, но их сумма выглядит светлее, чем необходимый. Если попытаться сделать его темнее с помощью красного, то получим еще более светлый результирующий цвет, так как световые энергии складываются. То есть мы можем добавлять красный, для получения более светлого образца. Математически добавление красного цвета к поучаемому цвету соответствует вычитанию его из двух оставшихся базовых потоков (физически это невозможно, так как отрицательной интенсивности света не существует). Запишем уравнение следующим образом:
.
|
На рисунке показаны функции r, g, b уравнения по цвету для монохроматических потоков цвета с длинами волн 436, 546, 770 нм. С их помощью можно уравнять все длины волн видимого спектра. На графике присутствует отрицательная область. Значения в данной области соответствуют «добавлению»
инструментального цвета к синтезируемому. Изучением данных функций занимается колориметрия. Замечено, что один и тот же цвет можно получить разными наборами базисных цветов (r1, g1, b1) и (r2, g2, b2). То есть цвет можно уравнять различными составными источниками с неодинаковым спектральным распределением. (r1, g1, b1) и (r2, g2, b2)- метамеры.
Представим цвет С как вектор с составляющими rR, gG, bB. Пересечение вектора C
с единичной плоскостью R+G+B=1 дает относительные веса его красной, зеленой и синей составляющих. Их также называют значениями или координатами цветности:
Заметим, . Рассмотрим связь: . Если функции уравнивания по цвету перенести в трехмерное пространство, то результат не будет целиком лежать в положительном октанте.
Треугольник XYZ задан так,
что в него входит видимый спектр. Координаты цветности CIE (x, y, z) задаются следующим образом:
,
Комиссия решила ориентировать треугольник XYZ таким образом, что равные количества гипотетических основных цветов XYZ давали в сумме белый. На рисунке изображен цветовой график. Область на графике - видимое множество цветов. На контуре проставлены значения соответствующих длин волн в нм, соответствующие чистым, не разбавленным цветам.
В центре области находится опорный белый цвет - точка равных энергий, с координатами x=y=0.33(3).
Часто применяют следующие источники CIE:
Название |
Температура |
x |
y |
Лампа с вольфрамовой нитью накаливания. |
2856К |
0.448 |
0.408 |
Солнечный свет в полдень. |
5600К |
0.349 |
0.352 |
Полуденное освещение при сплошной облачности. |
6300К |
0.310 |
0.316 |
Опорный белый стандарт для мониторов и NTSC. |
6400К |
0.313 |
0.329 |
|
|
Как видно, наибольшую площадь занимают цвета с преобладанием зеленого,
что согласуется с чувствительной избирательностью человеческого глаза.
На цветовом графике CIE удобно демонстрировать цветовой охват различных систем и оборудования: телевидения, типографской печати, фотопленок и т.п. Цветовой обхват для аддитивных систем - треугольник с вершинами, соответствующими основным цветам RGB.
Цвет, который можно получить в данной цветовой модели лежит внутри треугольника, цвета, лежащие вне - получить невозможно. Примеры цветовых обхватов для некоторых моделей можно увидеть на рисунке. Заметим, что для цветной пленки обхват есть криволинейный треугольник. Причина этого заключается в нелинейном (в данном случае логарифмическом) законе создания цветного изображения с помощью цветной пленки. Ниже приведена таблица основных цветов моделей в координатах цветового графика CIE:
Модель |
Цвет |
x |
y |
CIE XYZ. |
Красный Зеленый Синий |
0.735 0.274 0.167 |
0.265 0.717 0.009 |
Стандарт NTSC. |
Красный Зеленый Синий |
0.670 0.210 0.140 |
0.330 0.710 0.080 |
Цветной монитор. |
Красный Зеленый Синий |
0.628 0.268 0.150 |
0.346 0.588 0.070 |
Например, преобразование RGB - CIE XYZ задается следующей формулой:
,где - цвета для получения координаты единичного основного цвета R, аналогично и для G и B. Если известны координаты цветности CIE x и y
для основных цветов RGB, то:
, где:
- данные величины необходимы для полного преобразования между системами основных цветов, также можно получить и следующим образом:
1. Известны - яркости единичных количеств основных цветов:
.
2. Известен - координаты цветности опорного белого и его яркость:
Обратное преобразование CIE XYZ в RGB задается как:
, где c элементами: